热门搜索:
0.5t/h生活地埋式污水处理装置
生活污水处理设备、一体化污水处理设备、医疗废水处理设备、电镀污水处理设备、景区污水处理设备、厕所污水处理设备、餐饮污水处理设备、印染污水处理设备、疾控中心污水处理设备、化工污水处理设备----鲁盛环保。
我公司以质量说服客户,xian进的技术让客户放心,售后服务让客户满意,免费运输,免费安装,免费提供技术咨询,请放心订购!
摘要
生活地埋式污水处理设备包括安装于一个壳体内的、顺序水连通的水解厌氧槽、生物净化槽、沉淀与均质滤料过滤组合槽,其特征在于水解厌氧槽、生物净化槽内均设置有悬浮式流化填料;一脉冲进水罐位于水解厌氧槽上方,其俯冲管穿过悬浮式流化填料连接布设在水解厌氧槽底部的旋流布水器;生物净化槽被隔板分隔成前后水连通的三个池体,各池体底部均设有曝气装置,下部池壁上设有潜水推进器;沉淀与均质滤料组合槽由水连通的斜管沉淀槽和均质滤料过滤槽组成,斜管沉淀槽与生物净化槽连通,均质滤料过滤槽的下部设有出水管和反冲洗管,反冲洗管连接脉冲进水罐,均质滤料过滤槽的上部设有反冲洗回流管,反冲洗回流管连接水解厌氧槽;斜管沉淀槽底部设有污泥回流装置连通水解厌氧槽或生物净化槽。生活污水经人工细格栅后流入集水井用提升泵将污水提升至脉冲进水罐,脉冲频率为每5分钟一次,放水时间为8-12秒。脉冲进水管的俯冲管出水冲击水解厌氧槽内的旋流布水器,悬浮式流化活动填料与厌氧或兼性微生物(活性污泥)均匀混合,使污水中的难于生化降解的污染物和大分子物质分解为可降解的小分子物质,水解酸化后自流进入生物净化槽,在生物净化槽内经过厌氧或缺氧或好氧各级反应,之后污水进入斜管沉淀槽,底部沉降的含磷污泥通过污泥回流装置回流至水解厌氧槽或生物净化槽或排出;沉淀后的水进入均质滤料过滤槽,将悬浮颗粒去除,后处理后的水从出水口排出;均质滤料过滤槽由脉冲进水罐的反冲洗管出水定时反冲洗,反冲洗出水从反冲洗回流管回流至水解厌氧槽再处理。
厌氧生物滤池
厌氧生物滤池内部填充固体填料,如炉渣、瓷环、塑料等,厌氧微生物部分附着生长在填料上,形成厌氧生物膜,另一部分在填料空隙间处于悬浮状态。
厌氧滤池的优点是:生物固体浓度高,可以承担较高的负荷;生物固体停留时间长,抗冲击负荷能力较强;启动时间短,停止运行后再启动比较容易;不需污泥回流;运行管理方便。厌氧生物滤池的缺点是在污水悬浮物较多时容易发生堵塞和短路。
厌氧生物滤池可采用中温(30~35℃)、高温(50~55℃)或常温(8~30℃)运行,适用于溶解性物较高的废水,适用COD浓度范围为1000~20000mg/L。为了避免堵塞,可回流部分处理水以对进水进行稀释和加大水力表面负荷。
厌氧生物滤池按水流的方向可分为升流式厌氧滤池和降流式厌氧滤池。废水向**动通过反应器的为升流式厌氧滤池,反之为降流式厌氧滤池。如果将升流式厌氧生物滤池的填料床改成两层,下半部不用填料使成为悬浮污泥层,上半部仍用填料床,成为复合式厌氧生物滤池,则可有效避免堵塞并提高处理效率。降流式厌氧生物滤池由于水流下向流动、沼气上升以及填料空隙间悬浮污泥的存在,混合情况良好,属于混合工艺;而升流式则属于推流式工艺。
生活地埋式污水处理设备--MEBR 强化型膜生物反应器
将生物膜反应器与膜生物反应器相结合,开创了膜法污水处理的新纪元。MEBR污水进入生物膜反应器,利用生长在生物填料表面的微生物膜降解污染物,使得生物反应器出水中的污泥含量大大降低,污泥的沉降性能大大提高,因而可以利用较小的沉淀体积实现生物反应器产水污泥含量大大降低。
生物膜反应器出水进入中空纤维膜分离装置,由于膜分离装置的给水中污泥含量被控制在100ppm以下,膜的工作环境成倍改善,膜的通量也得以明显提高。通过膜分离装置截留水中的游离活性细菌、细菌尸体、其它悬浮物和部分大分子化合物,使水质进一步提高。被膜截留的游离活性细菌、细菌尸体、其它悬浮物和部分大分子物再全部或部分返回生物膜反应器。
被膜截留的游离活性细菌会在生物反应器中被不断富集。当这些活性细菌被富集到较高浓度时,它们的生物降解作用就会明显的体现出来,以此可以加强了生物反应器的效率。被膜截留的细菌尸体和大分子物会不断循环回到固定床生物反应器中,使之在生物反应器中停留时间和浓度成倍地增长。
此时,固定床生物反应器会逐渐驯化出降解这些物质的细菌菌落,这些细菌菌落将这些通常随出水排放的难降解的污染物降解。被膜截留的污泥再返回生物膜反应器,通过生物反应器降解而减低污泥排量。由此可见膜分离装置截留物的反馈可以从多方面强化生物反应器,提高生物反应器的效率。
而生物反应器效率的提高可以进一步提高生物反应器出水水质,减小膜分离装置的工作压力,加强膜分离装置的处理效果。因此,固定床生物反应器和膜分离装置的结合可以互相加强,起到较好的处理效果
生活地埋式污水处理设备--工艺特点:
① 由于采用了固定填料,解决了污泥膨胀的问题,且提高了系统的抗冲击负荷能力。*活性污泥培菌,可自行挂膜,对微生物生长快,故启动时间短。
② 填料与进水所成角度小,接触充分,溶解性CODcr去除率高达70-98%,由于存在填料对气泡的切割作用,可以使氧的利用率提高至16%
③ 曝气系统采用穿孔管,解决了曝气头易坏需要换的难题,节约投资,维护简单,使用寿命可达20年。
④ 将HRT和SRT分开,固体停留时间长达20几天,有利于硝化菌的生长,有很好的脱氮效果;
⑤ 与传统的活性污泥法单一的生物群不同,FSBBR工艺中可以形成完整的食物链,通过微生物的逐级降解,的将水中的污染物去除。它与单一生物环境的根本区别就在于依靠完整的食物链逐级降解污泥,从而大量的降低了污泥排放量,而产生少量只需要通过污泥泵定期外排运出即可,从根本上解决了污泥产生大量异味及处理系统复杂的操作管理,降低了费用。
⑥ 采用新型生物载体,在好氧、厌氧、缺氧段都使用该载体,通过控制良好的混合液回流,在同一构筑物中培养出硝化菌和反硝化菌,成功实现了同步硝化反硝化,提高氨氮去除率增强对磷的处理能力。
⑦ 同时由于在载体外部水流速度快,而且大量曝气,因此整个池子处在一种好氧的状态下,但在载体内部会出现缺氧及其厌氧的反应,这种厌氧的状态被整个的好氧状态所包围,因此该技术不产生臭气,从根本上解决传统工艺上存在的气味问题。
生活地埋式污水处理设备--水解(酸化)池与厌氧反应器的区别
从原理上讲,水解(酸化)是厌氧消化过程的*二两个阶段但水解(酸化)工艺和厌氧消化追求的目标不同,因此是截然不同的处理方法。
水解(酸化)系统中的的目的主要是将原水中的非溶解态物转变为溶解态物,特别是工业废水处理,主要是将其中难生物降解物质转变为易生物降解物质,提高废水的可生化性,以利于后续的好氧生物处理。考虑到后续好氧处理的能耗问题,水解(酸化)主要用于低浓度难降解废水的预处理。
在混合厌氧消化系统中,水解酸化是和整个消化过程地结台在一起,共处于一个反应器中,水解、酸化的目的是为混合厌氧消化过程中的甲烷化阶段提供基质。而两相厌氧消化中的产酸段(产酸相)是将混合厌氧消化中的产酸段和产甲烷段分开,以便形成各自的佳环境,同时,产酸相对所产生的酸的形态也有要求(主要为乙酸)。
此外,废水中如含有高浓度的硝咳盐、亚硝酸盐、硫酸盆、亚硫酸盐时,这些物质及其转化产物不仅对甲烷苗有毒,而且影响沼气的质量,也在产酸相中予以去除。
因此,尽管水解(酸化)一好氧处理工艺中的水解(酸化)段、两相法厌氧发酵工艺中的产酸相和混合厌氧消化工艺中的产酸过程均产生酸,但由于三者的处理目的不同,各自的运行环境和条件存在着明显的差异,主要表现在以下几个方面:
(1)Eh不同
在混合厌氧消化系统中,由于完成水解、酸化的微生物和产甲烷微生物共处于同一反应器中,整个反应器的氧化还原电位Eh的控制必须满足对Eh要求严格的甲烷菌,一般为一300mV以下,因此。系统中的水解(酸化)微生物也是在这一电位值下工作的。而两相厌氧消化系统中,产酸相的氧化还原电位一般控制在一100mV一一300mV之间。据研究,水解(酸化)一好氧处理工艺中的水解(酸化)段为——典型的兼性过程,只要置Eh控制在+50mv以下,该过程即可顺利进行。
(2)pH值不同
在混合厌氧消化系统中,消化液的pH值控制在甲烷菌生氏的佳pH范围,一般为6.8—7.2。而在两相厌氧消化系统中,产酸相的pH值一般控制在6.o一6.5之间,pH降低时,尽管产酸的速率增大,但形成的酸形态将发生变化,丙酸的相对含量增大,而丙酸对后续的甲烷相中的产甲烷菌会产生强烈的抑制作用。对于水解(酸化)一好氧处理系统来说,由于后续处理为好氧氧化,不存在丙酸的抑制问题,因此,控制的pH范围也较宽,从而可获得较高的水解(酸化)速率,一般pH维持在5.5—6.5之间。
(3)温度不同
三种工艺对温度的控制也不同,通常混合厌氧消化系统以及两相厌氧消化系统的温度均严格控制,要么中温消化(30一35oC),要么高温消化(50一55oC)。而水解(酸化)一好氧处理工艺中的水解(酸化)段对工作温度无特殊要求,通常在常温下运行,也可获得较为满意的水解(酸化)效果。