热门搜索:
每天处理40吨地埋式一体化生活污水处理设备
该设备解决了现有技术中设备集成度不高、投资大、占地面积大且污染物去除率不高、出水水质不稳定的缺陷,通过膜分离技术与生物技术结合对污水进行处理,设备结构紧凑、体积小、占地面积小,保证了出水清澈透明,得到高质量的清水。
污水处理设备能有效处理城区的生活污水,工业废水等,避免污水及污染物直接流入水域,对改善生态环境、提升城市品位和促进经济发展具有重要意义,埋地式污水处理设备是一种模块化的污水生物处理设备,具有的生物密度大、耐污能力强、动力消耗低、操作运行稳定、维护方便的特点,但现有的埋地式设备的体积较大,结构分散,为此,我们提出了一种埋地式一体化污水处理设备。
分流处理及技术介绍
根据废水处理装置废水来源、污染物种类、污染物含量的不同,工业园运行两套废水处理系统,一套为150m³/h高浓度废水处理装置,另一套为360m³/h综合废水处理装置。高浓度废水处理装置主要用于处理来自硝基苯装置、MDI装置废水,综合废水处理装置用于处理高浓度废水处理装置产水、煤气化装置废水、苯胺装置废水。
高浓度废水处理装置采用固定化微生物处理方式,来水经过混合、均质、pH调节、混凝沉淀后,去除来水中的悬浮物,提高废水可生化性。通过自流,废水进入生化系统,生化系统分为厌氧段和好氧段,在厌氧段,通过微生物的水解、酸化、发酵等作用,对自来水中的杂化类物进行开环作用,提高废水可生化性。
在好氧段,通过好氧微生物的氧化作用,将废水中的物降解为二氧化碳和水,同时,在好氧段后端,通过硝化作用,将来水中的氨氮氧化为硝酸根和亚硝酸根。在好氧段后端,加入碳酸钠为硝化反应提供无机碳源。处理合格的废水通过废水提升泵输送至园区综合废水处理单元进行进一步深度处理。
高浓度废水处理装置生化池装填有填料,为微生物生长、繁殖提供空间,废水处理装置产生的所有废气统一收集后进行活性炭吸附处理。高浓度废水处理装置COD去除率能够达到80%以上,氨氮去除率能够达到90%。并且对硝基苯、氯苯等物具有一定的处理能力。
综合废水处理装置采用活性污泥+MBR处理方式,来水经过混合、均值、PH调节和混凝沉淀后,进入水解酸化池,以提高废水可生化性。然后进入缺氧池,在缺氧段去除大部分的COD,之后,废水进入好氧段,去除氨氮和剩余的物,并通过MBR实现废水分离。膜池废水通过污泥回流泵,以3倍回流比回流至缺氧段前端,进行反硝化反应。由于来水中的COD浓度较低,为确保系统反硝化性,缺氧段进水段根据来水碳氮比投加园区副产甲醇。
排泥水安全回用
滤池反冲洗水及浓缩池上清液排至回收水池进行静沉后回收,回收水池设1座分2格,单格调节水量按2格砂滤池反冲洗水量与浓缩池上清液之和考虑,出水设置高、低位闸板阀以分层出水。
1 静沉时间
砂滤池反洗水由于其含固率太低,沉降试验未见明显的固液分层,但静沉1.0 h后,上清液水质有所改善,浊度一般在10 NTU左右,与原水浊度相当,较反洗水平均浊度50 NTU有明显下降。因此设计静沉时间采用1.0 h,具体时间可根据水厂具体运行管理工况调整。
.2 回流比
在回收利用时,应尽量做到均匀回流,合理控制回流比,减少回收水对制水工艺的水质、水量冲击,这对**水厂正常稳定运行非常重要。依据试验成果,经过静沉后,在回用砂滤池反冲洗水比例小于6%时,可以降低混凝后絮体颗粒表面的Zeta电位,改善混凝条件,有利于降低沉后水浊度,并且不会造成沉后水细菌总数的大幅度上升。当反冲洗水回用比例过10%,对制水生产负荷的冲击较大,易导致沉后水的CODMn和细菌总数都有大幅度的上升,使得水质安全**性降低。
回收水上清液可采用潜水泵24 h连续运行方式或结合生产情况采用间歇运行方式,提升至原水汇合井,每格回收池设2台泵,1用1备,结合生产工况确定水泵开启台数,合理控制回流比。
3 水质安全
静沉后的回收水上清液中总锰、卤代物、藻类及微生物剑水蚤等较原水均所上升,其中藻类及微生物剑水蚤增幅较大。
为了降低上述水质风险,在运行中保证一定的回收水静沉时间,以尽量降低回收水的浊度,浊度是一个重要的运行水质指标,降低浊度的同时也降低水中的菌落总数、大肠杆菌、病毒、两虫及铁、锰等重金属指标。其次设置回收水消毒剂投加设施,设计考虑在回收水管道处增设水射器投加氯,投加量为1.5~2.5 mg/L。当投加浓度2.0 mg/L,消毒时间30 min时,反洗水中的菌落总数、藻类去除率较高,在70%左右,处理后基本与原水水质数量相当,但对剑水蚤的灭活效果一般,仅为20%~40%。考虑在出水管道处设置管式紫外消毒装置以进一步降低剑水蚤生物风险,设计投加剂量为50 mJ/cm2,达到灭杀剑水蚤的效果。其余重金属指标溶解性铁、锰、铝,藻毒素以等未见明显增加。另外,生产中需要定期对回收水取样进行检测。
排泥水减量
1 絮凝沉淀池
絮凝池采用穿孔排泥管排泥,共32个排泥阀,平流沉淀池采用桁架式虹吸刮吸泥机,共2台。在水厂相关的生产性试验结果基础上,采用絮凝池积泥量沿水流前进方向逐渐递增,即采用絮凝前端排泥时间短,絮凝末端排泥时间长的排泥方式,与统一定时排泥方式相比降低了絮凝前端的无效排泥水量。平流沉淀池积泥主要集中在池前端,前端采用刮吸泥机折返多次排泥的方式,其余积泥较少的区域单程排泥即可,并可适当延长排泥周期。此运行方式与常规往返连续排泥相比降低了无效排泥水量,并缓解前端积泥过多的问题。
絮凝池按水流方向分为3段,设计排泥时间分别设置为20、40、60 s,设计排泥周期24 h,絮凝池排泥水量每天约200 m3。沉淀池前端1/3处为积泥量较大的区域, 该区域考虑刮吸泥机折返2次排泥,排泥周期24 h,其余区域单程排泥1次,排泥周期48 h,沉淀池排泥水量每天约700 m3。较絮凝沉淀池常规定时、往返运行工况排泥水总量1 150 m3降低了21.7%,絮凝沉淀池排泥水率由0.58%降至0.45%。
2 砂滤池
砂滤池采用V型滤池,共8格,单池面积为135.8 m2,采用气、水三阶段恒气量变水量反冲洗方式。原运行工况:反冲洗周期为48 h,气冲时间2 min,气水冲时间5 min,单水冲时间6 min,单格反冲洗排水量627 m3,每日滤池反冲洗排水总量约2 508 m3。
依据生产试验结果,设末期反洗排放水浊度小于10 NTU为结束工况点,对不同的运行周期与阶段反洗时间组合进行比选,在反洗达标及出水水质合格的前提下,排水量少的工况条件为:滤池运行周期48 h,气冲时间2 min,气水冲时间4 min,单水冲时间4 min。
反冲洗周期为48 h,8格池分两组隔日交替反洗,以避免反洗水量峰值出现。其中单气冲时的气冲强度15.5 L/(m2·s),时间2 min;气水冲时,气冲强度15.5 L/(m2·s)、时间4 min,水冲强度3.0 L/(m2·s),时间4 min;若单水冲时,水冲强度6.0 L/(m2·s),时间4 min;表扫强度2.0 L/(m2·s),时间10 min。
单格滤池反洗排水量为表面扫洗水量、气水冲时排水量、单水冲时排水量之和,单阶段反洗量=滤池面积×单位面积的反洗量×时间,其中表面扫洗水量为135.8 m2×2.0 L/(m2·s)×3.6×(10 min/60 min)=163.0 m3,气水冲时排水量为135.8 m2×3.0 L/(m2·s)×3.6×(4 min/60 min)=97.8 m3,单水冲时排水量为135.8 m2×6.0 L/(m2·s)×3.6×(4 min/60 min)=195.6 m3。因此,单格滤池反洗排水量为163.0 m3+97.8 m3+195.6 m3=456.4 m3。
每日滤池反冲洗排水总量约1 825 m3,较原工况反洗水总量2 508 m3降低了27.2%,滤池反洗排水率由1.25%降至0.91%。
综上所述,通过优化排泥水设施运行工况,排泥水率由1.83%降至1.36%,预计全年节水约34.3万m3。
生活地埋式污水处理设备包括主箱体,所述主箱体内依次设置有相互平行的*隔板、*二隔板、*三隔板和*四隔板,将所述主箱体分隔为依次连通的厌氧区、好氧区、MBR膜区、设备间和清水箱,所述厌氧区一侧的上部设置有进水口,底部纵向均匀布设有多根相互平行的穿孔布水管,所述进水口通过进水管道与所述穿孔布水管连通;所述好氧区的底部与所述MBR膜区的底部均均匀布设有微孔曝气装置;所述MBR膜区底部所述微孔曝气装置的上方还设置有穿孔曝气管;所述MBR膜区内所述穿孔曝气管的上方设置有MBR膜组件;所述MBR膜组件一侧的上方水平设置有总集水管,所述设备间内设置有出水自吸泵,所述总集水管的一端与所述MBR膜组件连通,另一端穿过所述*三隔板与所述出水自吸泵连通;所述出水自吸泵的另一端通过出水管连通所述清水箱;所述清水箱一侧的上部设置有出水口;所述设备间内还设置有反冲洗装置,所述反冲洗装置的一端连通所述清水箱,另一端与所述总集水管连通。
其中,所述MBR膜组件包括多个竖直设置的膜支架,各所述膜支架上均设置有膜元件;各所述膜元件的上下两端均水平连通有集水管,各所述集水管的出水端均与所述总集水管连通。
其中,所述反冲洗装置包括反冲洗进水管,所述反冲洗进水管的一端与所述清水箱连通,另一端连通有反冲洗泵,所述反冲洗泵的另一端安装反冲洗出水管,所述反冲洗出水管的另一端与所述总集水管连通。
其中,所述清水箱的一端设置有加药箱,所述设备间内还设置有加药装置;所述加药装置包括进药管,所述进药管的一端与所述加药箱连通,另一端连通有加药泵,所述加药泵的另一端连通有出药管,所述出药管的另一端与所述总集水管连通。
作为一种改进方案,所述好氧区内设置有好氧菌弹性填料。
作为一种改进方案,所述设备间内还设置有鼓风机,所述鼓风机穿过所述*三隔板连通所述微孔曝气装置和所述穿孔曝气管。
作为一种改进方案,所述MBR膜区底端的一侧面上设置有排泥口。
作为一种改进方案,所述*隔板的上部设置有*溢流堰,所述*溢流堰下方纵向设置有伸入到所述好氧区底部的*布水管,所述厌氧区通过所述*溢流堰和所述*布水管与所述好氧区连通。
作为一种改进方案,所述*二隔板的上部设置有*二溢流堰,所述*二溢流堰下方纵向设置有伸入到所述MBR膜区底部的*二布水管,所述好氧区通过所述*二溢流堰和所述*二布水管与所述MBR膜区连通。
作为一种改进方案,所述厌氧区的上方、所述好氧区上方、所述MBR膜区的上方、所述设备间的上方及所述清水箱的上方分别设置有人孔。