热门搜索:

潍坊鲁盛水处理设备有限公司是一家专业研发、生产、销售水处理设备及配套设施。主营:地埋式一体化污水处理设备、二氧化氯发生器、加药装置、气浮机等产品。欢迎各位前来咨询业务。

    150m3/d污水处理一体化装置

    更新时间:2024-06-17   浏览数:288
    所属行业:环保 水处理设备 污水处理成套设备
    发货地址:山东省潍坊潍城区北关街道  
    产品规格:150m3/d
    产品数量:100.00台
    包装说明:不限
    价格:¥2222.00 元/台 起
    产品规格150m3/d包装说明不限产品名称150m3/d污水处理一体化装置 鲁盛环保

    潍坊鲁盛环保水处理设备有限公司

    150m3/d污水处理一体化装置处理效果好,占地省、能耗低、运行管理简便、

    二次污染少;对污染物去除、硝化能力强。任何型号、任何尺寸、任何价格的

    设备供客户挑选。设备确定好后厂家送货上门、免费安装、免费培训、免费售后服务。


    单级全程自养脱氮(CANON)工艺
    1999年THIRD K A等提出,CANON是一种基于亚硝酸氮的单级全程自养脱氮工艺,其理论基础是在一体化反应器体系内同时实现半短程硝化与厌氧氨氧化反应。在生物膜表面或颗粒污泥表面,由于处于低溶解氧环境,部分氨氮在氨氧化菌的作用下被氧化成亚硝酸氮;在生物膜内部或颗粒污泥内部,由于处于厌氧环境,产生的亚硝酸氮和剩余氨氮在厌氧氨氧化 菌的作用下反应生成氮气,并产生很少量的硝酸氮,从而实现氨氮从废水中的去除。
    该工艺去除氨氮的影响因素有温度、DO、ph值、水中游离氨(FA)、物、重金属离子、重金属沉淀物等。CANON工艺虽然革新了传统生物脱氮的思路,但要大规模工程化还存在一些局限性。例如启动周期长,厌氧氨氧化反应阶段的功能菌 AnAOB增殖缓慢,世代时间为7~14 d,是反硝化菌的几十倍,因此富集培养困难,世界上个生产性装置启动时间长达3.5年;其次温度要求高,现已报道的CANON 工艺基本都是30 ℃以上,并不是所有废水都能达到该标准,若加热势必会带来能耗增加,运行易失稳,由于亚硝酸盐积累而进行排泥,结果降低了反应器的生物质浓度 造成系统失稳;还会排放温室气体N2O。
    CANON 工艺是迄今为止为新型的生物脱氮方法,与传统的生物脱氮工艺相较有明显的优势,因而有广阔的应用前景,目前CANON已逐步向实际工程推进,但作为一项新型脱氮工艺,其还存在一些问题尚需改进与解决。
    目前,国内高浓度废水的研究多集中在厌氧生物处理。厌氧生物处理是厌氧微生物利用高浓度废水中的质作为自身营养物质,在适宜的条件下(如合适的温度、pH 等),将其转化为沼气的过程。此过程不仅可以去除污水中的污染物,还可实现能源再生。传统厌氧生物处理具有投资省、运营成本低、易于管理控制及剩余污泥产率少等特点。
    但是由于高浓度废水的复杂性,采用传统厌氧消化技术在其能源转化工程中遇到诸多问题,例如污泥上浮、污泥流失、VFAs 累积等,终导致运行的失败。AnMBR 是一种结合厌氧生物处理单元和膜分离技术的新型废水处理工艺,其不仅保留了厌氧技术的诸多优点,而且膜组件的引入可以将微生物截留,从而实现了 SRT 和 HRT 的有效分离。也正因如此,厌氧膜生物反应器具备污泥浓度高、泥龄长、耐冲击负荷能力强等优点,其在高浓度和复杂废水处理方面展现出很好的应用前景。
    虽然 AnMBR 有上述的许多优点,但是 AnMBR 在废水资源回收方面仍然面临着一些重大挑战,这些问题主要集中在温度,盐度积聚,抑制物质和膜污染。

    厌氧膜生物反应器的基本原理和构造
    AnMBR 是一种将厌氧生物处理技术与膜分离技术相结合的工艺。AnMBR 具有以下优点:可将废弃物转化成甲烷再次利用,产生较小的剩余污泥、占地面积小、基建费用低、二次污染少,过滤性能好,有效拦截污染物和大分子物[6],对某些有毒物质去除效果好,出水水质理想。
    根据厌氧处理的方式不同,AnMBR 也有不同的构造。常见厌氧生物反应器包括**式厌氧污泥床(UASB),混合式反应器(CSTR)和厌氧流化床生物反应器(AFBR)。在这些反应器中,CSTR 是 AnMBR 常用的配置,其优点在于构造和操作较为方便。UASB 可以在生物反应器的底部区域保留生物质,所以过膜的出水的悬浮固体浓度很低,减轻膜污染。同时,在 UASB 反应器中,可以通过气/液/固分离器来收集产生的甲烷。AFBR 反应器则是通过填充如石英砂、活性炭、沸石这类细小的固体颗粒填料来净化出水。
    膜污染
    在污水处理过程中,无机或污染物会在膜孔、膜表面沉积,降低膜通量,增加跨膜压差,因此需要及时化学清洗或换滤膜。而鉴于膜材料成本昂贵,膜污染仍然是限制 AnMBR 广泛应用的关键因素。Smith指出 AnMBR 中主要污染物包括可溶性微生物(SMP)、胞外聚合物(EPS)、胶状固体、附着的细胞和无机沉淀物。Jun[18]研究发现,在约 700 天长期运行的 AnMBR 中会生成由生物诱导效应而产生的矿物质结垢,而这种污染是一种不可逆污染,因此,需要化学清洗来恢复膜的通透性。
    AnMBR 运行期间的膜污染主要取决于膜的性质、操作条件(例如温度,水通量,HRT 和 SRT)、流体动力学和污泥特性。例如,Lin[16]研究报道,在相同的流体动力学条件下操作时,高温条件下系统的过滤阻力会比中温条件下系统的过滤阻力高约 5~10倍。这是由于在高温条件下,SMP 和细小的絮凝物会大量累积。
    尽管目前已经具有一些有效控制膜污染的方法,但是膜清洁这个环节仍然是必不可少的。膜清洁包括物理法、化学法和生物法。物理法主要包括反冲洗,表面冲洗和声波处理。化学法是指运用特定的试剂(酸、碱和氧化剂)来去除膜的不可逆污染。值得一提的是,化学法需要消耗化学试剂,会不可避免地带来二次污染等问题。生物法是指采用酶制剂来清洗膜污染中的污染物,酶制剂没有二次污染,而且对膜不产生损害,但是,其高额的价格成本制约了进一步的应用。
    生物反硝化作用即为在缺氧条件下反硝化细菌利用硝酸盐中的离子氧分解物的过程,硝酸盐即被还原为N2,完成脱氮过程。反硝化过程中的反硝化细菌是大量存在于污水处理系统中的异氧型兼性细菌,在有氧存在条件下,反硝化细菌利用氧进行呼吸、氧化分解物。
    在无分子氧的条件下,同时存在硝酸和亚硝酸离子时,它们能用这些离子中的氧进行呼吸,使质氧化分解。反硝化细菌能够利用各种各样的基质作为反硝化过程中的电子供体,其中包括:碳水化合物、酸类、醇类以及甚至像烷烃类、苯酸盐类和其它的苯衍生物这些化合物,它们往往是废水的主要组分。影响反硝化速率的因素较多,包括PH值、温度、DO、碳氮比、污泥浓度等,实际污水处理厂在工艺的运行中只能对DO、污泥浓度等参数进行控制。碳氮比虽然是反硝化反应中重要的影响因素但其和来水水质有很大关系一般实际运行中很难控制。
    a. 反硝化反应过程中要求在无分子氧存在的条件下反硝化细菌才能利用硝酸盐及亚硝酸盐中的离子氧分解物。之前提到,高污泥浓度的生物系统在硝化过程中可适当降低溶解氧值,同时保持硝化效果,因此使硝化末端降低溶解氧可以有效的减少硝酸盐回流液中所携带的溶解氧含量,降低分子氧在缺氧区对反硝化进程的影响,提高反硝化菌利用碳源的反硝化能力。
    同时高污泥浓度自身内源代谢好氧量也相对较强,可以进一步消耗回流及缺氧段中的溶解氧。再有非常高的污泥浓度会改变混合液的粘滞性,增大扩散阻力,从而也使回流携带的溶解氧降低,在一些使用明渠作为回流通道的处理工艺中可以减小回流跌落的充氧量。总之高污浓度对于降低实际工艺运行中反硝化阶段的DO值有较大作用。




    http://pangzhengwei111.cn.b2b168.com